
Argo CD Best Practices
Learn how to create application dependencies,
preview your deployments, and create ephemeral
environments with Argo CD and GitOps.

Kostis Kapelonis

Contents

Introduction 3

Installation and upgrades 4

Manual approach 4

Using IaC 5

Argo CD managing itself 6

Using Argo CD Autopilot 7

Using a control plane 8

Scaling usage 10

Application dependencies 11

App-of-Apps pattern 12

SyncWaves 13

Prerequisites 13

Argo CD application health 13

Readiness and liveness probes 15

App dependency walkthrough 16

ApplicationSets 22

Argo CD and microservices 23

Review and diff deployments 24

The problem 24

Visualizing diffs in the UI 27

Running local diffs with the CLI 29

Pre-rendering manifests 31

Preview Terraform plans 35

Render manifests on the fly 38

Attaching diffs to a PR 42

Enforcing changes during
environment promotion

43

Understand the impact of your
manifest changes

47

Argo CD best practices 1

Creating preview environments
for pull requests

48

Keeping developers happy 49

Automatic app generation 51

Coordination with CI 54

The initial deployment 58

Handling PR commits 60

Destroying the temporary app 62

Injecting Git metadata 62

Limitations and future
considerations

65

Help developers test their
changes in isolation with Argo
CD

66

Conclusion 67

References 68

Further reading 71

Argo CD best practices 2

Introduction

Getting started with Argo CD sounds very easy. You install Argo CD in a cluster,
point it to your Kubernetes manifests in Git, and sit back while Argo CD deploys
all your applications. In reality, things are much more complex, and after the
initial installation, there are several open issues and challenges with day-2
operations. In this whitepaper, we explore the following topics:

1. The different ways to perform the initial installation of Argo CD
2. How to organize application dependencies, especially if your company has

micro-services
3. How to preview your Argo CD changes when you create pull requests
4. How to use Argo CD for temporary/ephemeral environments

Argo CD best practices 3

Installation and upgrades

Installing an Argo CD instance for testing purposes is a straightforward process,
as the project is provided in a single installation manifest , so if you want to
evaluate Argo CD on a local cluster quickly, no additional effort is required.

Chances are that one of your first Argo CD installations happened with kubectl
as explained in the getting started guide . While this form of installation is great
for quick experimentation and for trying Argo CD, we recommend other
installation methods for production deployments.

Manual approach

The most obvious installation method is using the official manifests or the
respective Helm chart . Note that the Helm chart for Argo CD is not official and
sometimes lags behind regular Argo CD releases.

While the initial installation of Argo CD using the manifests is quick and
straightforward, it suffers from several shortcomings:

You must apply configuration changes like SSO and notifications manually
without any option for rollbacks or auditing.
Lack of disaster recovery capabilities if your Argo CD instance becomes
unavailable.
Extra effort is needed for modifications on the base install (e.g., for Argo
CD plugins).
It becomes cumbersome to manage multiple Argo CD instances in a
manual way.

1

2

3

Argo CD best practices 4

https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml
https://argo-cd.readthedocs.io/en/stable/getting_started/
https://artifacthub.io/packages/helm/argo/argo-cd

However, the biggest challenge is safely upgrading Argo CD. New Argo CD
versions come with their own notes and incompatibilities , and trying to
manually upgrade your instance without any backup plan is a recipe for disaster.

You should only use manual installation via manifests for quick prototypes and
demo installations.

Using Infrastructure as Code (IaC)

Argo CD is a standard Kubernetes application like any other Kubernetes
application. If you already have a well-defined workflow for deploying and
managing applications on Kubernetes, you can reuse it for the initial Argo CD
installation.

A very popular method is to use IaC tools such as Terraform , Pulumi , and
Crossplane . A common bootstrap pattern is:

1. Create a "hub" Kubernetes cluster with Terraform
2. Use the Terraform K8s or Helm providers to install Argo CD on the "hub"

cluster
3. Create more Kubernetes clusters
4. Add the Kubernetes clusters to the main cluster (hub-and-spoke pattern)

using the Argo CD Terraform provider
5. Point Argo CD to your Application Sets in order to start your deployments

You can use a similar process with other IaC tools like Pulumi and Crossplane.

It is important to clearly separate the two worlds. The IAC tool should create the
cluster and stop after the installation of Argo CD. Argo CD is then responsible for
all Kubernetes workloads.

4

5 6

7

8 9

10

11

Argo CD best practices 5

https://argo-cd.readthedocs.io/en/stable/operator-manual/upgrading/overview/
https://developer.hashicorp.com/terraform
https://www.pulumi.com/
https://www.crossplane.io/
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
https://registry.terraform.io/providers/hashicorp/helm/latest/docs
https://registry.terraform.io/providers/argoproj-labs/argocd/latest/docs
https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-using-application-sets/

Using Argo CD to manage Argo CD

Managing your own Argo CD instance with an IaC tool is popular, but there is
another approach since Argo CD is a Kubernetes application. You can manage
Argo CD with itself .

This use case is valid, and many organizations use self-managed Argo CD. The
advantages are:

Using GitOps to handle both applications and the Argo CD installation
Full audit trail via Git
Easy rollbacks
Automatic drift detection for any manual changes
Complete changelog of all configuration changes (e.g., notifications SSO)
Easy disaster recovery

Using Argo CD to manage itself is a great way to manage a production instance
of Argo CD; however, depending on the size of your organization, this approach
will still suffer from some key challenges:

1. You still have to perform manual upgrades and make sure that each new
version of Argo CD "sits" cleanly on top of the previous one.

2. Managing many Argo CD installations and keeping them all in sync (pun
intended) is still a big challenge.

12

Argo CD best practices 6

https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-setup/#manage-argo-cd-using-argo-cd
https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-setup/#manage-argo-cd-using-argo-cd

Using Argo CD Autopilot

The use case for using Argo CD to manage Argo CD is very popular as a
concept, but there are no best practices for getting started and bootstrapping
the whole environment.

We use the same approach internally, and we fully open-sourced our solution .

Argo CD autopilot provides a CLI for installing and managing Argo CD that:

1. Connects to your Git provider
2. Bootstraps Git repositories for handling both applications and itself
3. Set up Applications and ApplicationSet for auto-upgrading itself and other

managed apps
4. Provides a best practice Git repo structure for both internal and external

applications
5. Comes with a CLI that lets you to manage and maintain the installation
6. Introduces the concepts of deployment environments/projects

Argo CD Autopilot is under active development. You are welcome to participate
in Github as well as the #argo-cd-autopilot channel in the CNCF slack .

13

14 15

Argo CD best practices 7

https://argocd-autopilot.readthedocs.io/en/stable/
https://github.com/argoproj-labs/argocd-autopilot
https://slack.cncf.io/

Using a control plane

Handling one or two Argo CD instances is pretty straightforward if you choose
any of the above installation methods. However, some organizations have many
Argo CD instances that need to be kept in sync or rolled out gradually as new
versions are released.

Argo CD can natively support a management instance that manages multiple
deployment clusters. Theoretically, you could have a single Argo CD instance for
all your environments. We have already talked about this pattern in our article
about scaling Argo . In the end, having a single instance is a single point of
failure and comes with its own issues for security and redundancy.

On the other hand, having an Argo CD instance for each deployment cluster is
also excessive. It can lead to a cumbersome setup where maintaining Argo CD
instances becomes tedious and unmanageable, especially across virtual private
clouds and firewalls.

Ideally, you would like a single management interface that can handle all
possible combinations (Argo CD management cluster and deployment clusters),
allowing you to craft your perfect topology.

This management interface exists in the form of the Codefresh GitOps control
plane!

16

Argo CD best practices 8

https://codefresh.io/blog/scaling-argo-cd-securely-in-2024/

Argo CD multi cluster management

The Codefresh platform gives you a unified interface for handling all Argo CD
instances, no matter where you locate them. All possible configurations are
supported:

Argo CD management clusters
Argo CD deployment clusters
Hosted Argo CD installations
Deployment clusters managed by the hosted instance
Argo CD instances that deploy on the same cluster where you install them
Argo CD instances that are deployed behind a firewall or in an on-premises
environment

17

Argo CD best practices 9

https://codefresh.io/codefresh-signup/

Via the control plane interface, you can:

1. Connect Argo CD instances
2. Connect target deployment clusters
3. See the status of each Argo CD instance and each connected cluster
4. Upgrade Argo CD instances to a new version in a controlled manner
5. Keep track of versions/security alerts, and easily upgrade

The unified control plane is the perfect tool for organizations that need a
management interface for all their Argo CD instances without the hassle of
manual upgrades.

Scaling usage

You should now know the possible installation options for Argo CD. It is
important to understand that you can mix-and-match installation methods or
change them completely as your company grows.

We have seen several customers start with the Terraform installation and
migrate to the Codefresh Cloud platform as the number of clusters increases.
Remember that it is possible to migrate Argo CD applications to a different
instance without downtime, so don't assume you are locked in using any one
installation method.

Argo CD best practices 10

Application dependencies

With the installation of Argo CD out of the way, we can focus on application
management. We will see a very common use case - Application ordering.

If you are using Argo CD, you may already know how the application Custom
Resource Definition (CRD) object helps you logically group your Kubernetes
Manifests. The application object is the atomic unit of work in Argo CD, and you
should think of all your Kubernetes objects in an application as a single entity.

Applications are also autonomous, meaning that by design, one application
doesn't know about the status or health of another application. This autonomy
could pose a challenge in organizations implementing a microservices
architecture, with each component in its own application Custom Resource (CR).
Some examples include:

1. Database -> Back end
2. Queue -> Queue workers -> Back end
3. Kyverno/Opa -> Apps that need to be limited
4. Database -> Back end -> Frontend

Since there is no way currently to set up Application dependencies natively, is
there a way to do it with what's available?

The answer is: Yes, by combining App-of-Apps and Syncwaves.

18

Argo CD best practices 11

https://github.com/argoproj/argo-cd/issues/7437

App-of-Apps pattern

The App-of-Apps pattern was a design that came from the community of Argo
CD users. The App-of-Apps design is an Argo CD Application comprising other
Argo CD Applications. Initially, the use case was for bootstrapping, as
administrators needed a way to deploy Argo CD Applications using Argo CD
itself. The natural fit was to create an application of other Argo CD Applications,
since an application is just another Kubernetes object.

Given the above example, we'd have the following Argo CD Applications:

Cert-Manager
Back-end Application
Caching System
Kyverno
Frontend Application
Ingress

Instead of deploying 6 individual Argo CD Applications, you can deploy one Argo
CD Application that deploys the other 6 applications for you.

The App-of-Apps pattern also provides a way to bootstrap a cluster with your
applications through a convenient "entry point" and creates a "watcher"
Application. Another benefit is that you can use other Argo CD paradigms within
this App-of-Apps pattern, such as SyncWaves.

19

Argo CD best practices 12

https://argo-cd.readthedocs.io/en/stable/operator-manual/cluster-bootstrapping/

SyncWaves

Syncwaves and Synchooks are a way to order how Argo CD applies individual
manifests within an Argo CD Application. The order is determined by annotating
the object with the order you'd like to apply the manifest, starting with the lowest
number first (negatives are allowed). For example, if you annotate your
deployment as "0", and your service as "1", Argo CD will apply the deployment
first, wait for it to report a healthy status, and then apply the service.

You may already have used Syncwaves and App-of-Apps separately. But what
happens if they are used together? Can we order individual Argo CD Applications
instead of just Kubernetes resources with Syncwaves?

Prerequisites

You need to set up a few things before integrating SyncWaves with your App-of-
Apps deployment and creating Argo CD Application dependencies.

Argo CD application health

Argo CD has built-in health checks for several standard Kubernetes objects. It
then bubbles these checks up to the overall Application health status as one
unit. For example, Argo CD marks an Application with a Service and a
Deployment as "healthy" only if both objects are considered healthy.

Some of the built-in health checks include (but are not limited to): Deployment,
ReplicaSet, StatefulSet, DaemonSet, Service, Ingress, and
PersistentVolumeClaim. You can also add custom health checks. You can read
more about it in the official documentation .

20

21

Argo CD best practices 13

https://argo-cd.readthedocs.io/en/stable/user-guide/sync-waves/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/

Also described in the official documentation , you need to tell Argo CD how to
check for the Application Custom Resource overall health. You do this by
modifying the argocd-cm ConfigMap and adding a resource customization. For
example:

apiVersion: v1

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-cm

 namespace: argocd

 labels:

 app.kubernetes.io/name: argocd-cm

 app.kubernetes.io/part-of: argocd

data:

 resource.customizations: |

 argoproj.io/Application:

 health.lua: |

 hs = {}

 hs.status = "Progressing"

 hs.message = ""

 if obj.status ~= nil then

 if obj.status.health ~= nil then

 hs.status = obj.status.health.status

 if obj.status.health.message ~= nil then

 hs.message = obj.status.health.message

 end

 end

 end

 return hs

This ensures the application controller reports the health of the Application CR
correctly. Starting in Argo CD version 1.8, you must use this setting (see issue
3781 for more details).

22

23

Argo CD best practices 14

https://argo-cd.readthedocs.io/en/stable/operator-manual/health/#argocd-app
https://github.com/argoproj/argo-cd/issues/3781

Readiness and liveness probes

Another part of getting Application dependencies up and running with App-of-
Apps is to make sure your deployments/statefulsets/daemonsets have the
proper readiness/liveness probes set up. This is important because Argo CD
will look at the object's health and use that to determine if the application is
healthy. This can cause issues if you don't have proper readiness/liveness
probes.

For example, a Deployment without readiness/liveness probes will be marked
healthy as soon as it is applied and the container is running. This will cause the
Application to be marked as healthy, when, in fact, your application may take
some time to come up. To get your Application dependency working optimally,
you should configure liveness and readiness probes. Here is a snippet of a
Deployment manifest that has these set for a web application.

livenessProbe:

 httpGet:

 path: /

 port: 8080

 initialDelaySeconds: 30

 periodSeconds: 10

 timeoutSeconds: 3

readinessProbe:

 httpGet:

 path: /

 port: 8080

 initialDelaySeconds: 30

 periodSeconds: 10

 timeoutSeconds: 3

24

Argo CD best practices 15

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

The above snippet shows that the container will be marked as "alive" when it
returns the expected HTTP response when probing that port and path. Similarly,
the container will be marked "ready" when the probe returns the expected HTTP
response.

App dependency walkthrough

I will be using an example using a repo called application-dependency, which
is a 3 tiered application made up of a frontend app , back-end api , and a
database . These three apps are deployed, individually, using an Argo CD
Application for each of them.

I want them to deploy in a specific order, and the logical way is to have the
database come up first, then the back-end app, then the frontend. Here is a
simple diagram:

Deployment order

To achieve this, I need to:

1. Create an individual Argo CD Application for each tier (already done here)
2. Create a parent Argo CD Application that deploys them (already done

here)
3. Update Argo CD with the health check for the applications
4. Make sure I have probes setup for my objects
5. Annotate my applications with the right syncwave

25

26 27

28

29

30

Argo CD best practices 16

https://github.com/kostis-codefresh/application-dependency-argocd
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-frontend.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-api.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-db.yml
https://github.com/kostis-codefresh/application-dependency-argocd/tree/main/apps
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/all-apps.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/all-apps.yml

To add the health check for Argo CD Applications, I created a patch file ; it
should look like this:

$ cat patch-argocd-cm.yaml

data:

 resource.customizations.health.argoproj.io_Application: |

 hs = {}

 hs.status = "Progressing"

 hs.message = ""

 if obj.status ~= nil then

 if obj.status.health ~= nil then

 hs.status = obj.status.health.status

 if obj.status.health.message ~= nil then

 hs.message = obj.status.health.message

 end

 end

 end

 return hs

Then update the argocd-cm ConfigMap:

kubectl patch cm/argocd-cm --type=merge -n argocd \

--patch-file patch-argocd-cm.yaml

NOTE : This is just an example for this paper. Ideally you would use GitOps to
manage this Argo CD ConfigMap. Also this can be done automatically with
ArgoCD Autopilot .

You can verify with the following command:

kubectl get cm argocd-cm -n argocd -o yaml

31

13

Argo CD best practices 17

https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/patch-argocd-cm..yml
https://argocd-autopilot.readthedocs.io/en/stable/

Now that the argocd-cm ConfigMap is updated, you can annotate the Argo CD
Application definition with the syncwave number. First, I annotate the Database
application with "1", as I want it to get deployed first. You can see the full
manifest for the database in my repo , here is a snippet of the YAML:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "1"

 name: my-db

 namespace: argocd

Next, I annotate my back-end API Argo CD Application with "2", since I want it to
come up only after the database application finishes. It's a similar manifest , so
here is a snippet:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "2"

 name: my-api

 namespace: argocd

Finally, I have my frontend application manifest , which has a syncwave
annotation of "3":

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "3"

 name: my-frontend

 namespace: argocd

28

27

26

Argo CD best practices 18

https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-db.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-db.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-api.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-frontend.yml

Before I go on to the App-of-App setting, I want to point out that all 3 of these
applications have readiness/liveness probes configured. For example, the
Frontend Deployment and the API Deployment have them set.

Now that we have the Argo CD Application health check set up, annotated the
applications in the order I want them in, and made sure we have
readiness/liveness probes in our apps, we can now take a look at the "Parent"
Argo CD Application in this App-of-Apps configuration.

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: all-apps-in-order

 namespace: argocd

 finalizers:

 - resources-finalizer.argocd.argoproj.io

spec:

 source:

 path: apps

 repoURL: 'https://github.com/kostis-codefresh/application-depend

 targetRevision: main

 destination:

 namespace: argocd

 server: 'https://kubernetes.default.svc'

 project: default

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 retry:

 limit: 5

 backoff:

 duration: 5s

 maxDuration: 3m0s

 factor: 2

 syncOptions:

 - CreateNamespace=true

32 33

30

Argo CD best practices 19

https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/manifests/frontend/deployment.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/manifests/api/deployment.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/all-apps.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/all-apps.yml

There is nothing inherently special about this application (it just looks like a
regular application), and that's because there isn't! The thing to note is that apps
is the path in my repo , where the other Argo CD Applications are.

So far we have:

1. Created the Argo CD Applications for my apps
2. Created the Parent Argo CD Application that will deploy those applications
3. Added the proper Argo CD Application health check to Argo CD
4. Made sure my Deployments had the right readiness/liveness probes
5. Annotated my Argo CD Applications with the Syncwave I want

Now, let's see this in action! With this configuration in place, I can apply the
"parent" Argo CD Application.

kubectl apply -f all-apps.yml

Here you'll see two Applications in the Argo CD UI, the "parent" Application and
the first Application in the syncwave, in my case: the database Application.

29

Argo CD best practices 20

https://github.com/kostis-codefresh/application-dependency-argocd/tree/main/apps
https://github.com/kostis-codefresh/application-dependency-argocd/tree/main/apps

After that is complete, the next application in the syncwave starts which is the
API application.

Finally, the last application in the wave will start to deploy, which is the frontend
application.

Argo CD best practices 21

The App-of-Apps is now complete! Once all 3 applications are synced and
healthy, the "Parent" Application will report as synced and healthy.

ApplicationSets

ApplicationSets are an evolution of what the App-of-Apps pattern provides.
ApplicationSets are designed to not only help with bootstrapping but also with
templating out an Argo CD Application. From a high level, an ApplicationSet can
use a single manifest to target multiple Kubernetes clusters. Furthermore, you
can use a single manifest to deploy multiple applications from one or more Git
repos.

With all that ApplicationSets give you, there is one caveat. There is no way to set
up application dependencies with ApplicationSets. It's something that has been
proposed (including using DAG), and you can track that upstream ; so you will
still need to use App-of-Apps if you need to set up application dependencies.

34

35 36

Argo CD best practices 22

https://argocd-applicationset.readthedocs.io/en/stable/
https://github.com/argoproj/argo-cd/issues/3517
https://github.com/argoproj/applicationset/issues/221

Argo CD and microservices

You should now be able to organize your microservice applications with Argo CD
and deploy them in the required order. It goes without saying that ideally you
shouldn't have to instruct Argo CD to do this at all.

Your developers should create microservices based on eventual consistency.
Each microservice should start in any order and automatically retry all its
connections until they are healthy. This means that deployment order does not
really matter if your microservices are created correctly. After 2-3 minutes, all
dependencies should be satisfied, and the whole application must be healthy as
a single entity.

Of course, we realize that changing legacy applications is not always possible,
and this is where Argo CD comes in.

Argo CD best practices 23

Reviewing and diffing deployments

The next topic we will address is understanding the impact of changes in
Kubernetes manifests when you use Argo CD.

Adopting Kubernetes has introduced several new complications regarding
verifying and validating all the manifests that describe your application. Several
tools are available for checking the syntax of manifests, scanning them for
security issues, enforcing policies, etc.

But in the most basic case, one of the major challenges is understanding what
each change means for your application (and optionally approve/reject the pull
request containing that change).

This challenge was already present even outside GitOps, but it has become even
more important for teams that use GitOps tooling such as Argo CD for their
Kubernetes deployments.

The problem

Any major Git platform has built-in support for showing diffs between the
proposed change and the current code when you create a pull request. In theory,
the presented diff should be enough for a human to understand what the
changes contain and how they will affect the target environment.

In practice, however, several teams have adopted a templating tool (such as
Kustomize or Helm) that renders the Kubernetes manifests for a target cluster.

As a quick example, let's say you need to review a pull request with the following
changes:

Argo CD best practices 24

No context diff

This seems simple enough. You assume that this change will increase the
number of replicas to 20. You merge the pull request and ... nothing happens.

What you didn't know is that there is a downstream Kustomize overlay that
also defines replicas on its own. So the proposed change has no effect at all.
The problem was that the pull request contained only a segment of a Kustomize
source manifest and didn't show a diff for the end result (the full rendered
manifest).

37

Argo CD best practices 25

https://github.com/kostis-codefresh/argocd-preview-diff/blob/no-context-pr/envs/prod-us/replicas.yml

The problem is even more apparent when your organization is using Helm. Let's
say that you need to approve a pull request with the following changes:

No context Helm diff

It is very difficult for humans to understand what is happening here. You need to
mentally run the templates through your head and decide if this change is
correct or not. Wouldn't it be nice if the diff had the actual manifest created from
this chart?

Essentially, the diff functionality found in your Git system is not enough for
complex Kubernetes applications.

Argo CD best practices 26

Visualizing diffs in the UI

One of the main benefits of using the Argo CD UI during a deployment is the
built-in diff feature. When a resource is "out-of-sync" and differs from what is in
Git, Argo CD will mark it with a special color/icon. In the following example,
somebody has changed the service resource of an application:

Out of Sync Resource

Argo CD best practices 27

You can then click on the service and see the diff:

Argo CD UI diff

The big advantage here is that Argo CD has already integrated support for
Kustomize and Helm. The diff you will see is on the final rendered manifests,
which is exactly what you want, as you can preview changes in their full context.

Unfortunately, this method also has several disadvantages.

The first is that Argo CD shows only diffs for applications when the auto-sync
(and self-heal) behavior is disabled. This means that you are losing the main
benefit of GitOps. The proper way to follow GitOps is to have auto-sync enabled
(and self-heal as well), as this way guarantees the fundamental premise that the
cluster and the Git repository contain the same thing - that the desired state and
actual state have not diverged.

38

Argo CD best practices 28

https://argo-cd.readthedocs.io/en/stable/user-guide/auto_sync/

The second problem regarding Continuous Delivery is that the diff on the
manifests is shown when the changes are already committed and pushed. This
is too late to perform a serious review. Ideally, you want to review changes as
early as possible. A pull request lets you add comments, talk with your team
about the changes, and also reject the pull request altogether without affecting a
production system.

Using the built-in diff functionality in the Argo CD GUI is great for validating a
change and doing a final review just before production. However, it should not be
the main review milestone for a manifest change. And ideally, you should setup
all your applications to sync automatically , so having this diff process is not
available in the first place.

Running local diffs with the CLI

The built-in diff UI in Argo CD is shown very late in the delivery process. Can we
use the same diff approach earlier in the life of a change?

It turns out that the Argo CD CLI also comes with a diff command . This diff
command takes a –local parameter that lets you compare what is happening
in the cluster against any local files, which you don't have to push (or even
commit). It will also automatically run your favorite template tool as you define it
in the Argo CD application.

39

40

Argo CD best practices 29

https://www.cncf.io/blog/2020/12/17/solving-configuration-drift-using-gitops-with-argo-cd/
https://www.cncf.io/blog/2020/12/17/solving-configuration-drift-using-gitops-with-argo-cd/
https://argo-cd.readthedocs.io/en/stable/user-guide/commands/argocd_app_diff/

Here is how it looks:

Argo CD Local diff

This approach is very promising, as you could, in theory, use it inside a CI system
with the following process:

Open a pull request with the suggested changes
Have your CI system check out the pull request
Run inside a CI pipeline argocd diff –local against the cluster where
you intend to deploy the changes in the pull request (It also uses again the
built-in support for kustomize/Helm within Argo CD)
Present the diff to the user to make decisions about the pull request

This CI-based approach sounds great in theory, but it has several shortcomings
in practice.

You must provide your CI pipeline credentials to access the cluster where you
installed Argo CD. However, providing the CI pipeline with cluster credentials
forfeits one of GitOps's main benefits - the pull mechanism, where the
credentials stay within the cluster.

Argo CD best practices 30

An even bigger concern, however, is what happens when you have multiple
clusters. Which cluster should you pick to compare against? What if the chosen
cluster has CRDs or other resources that are custom to it?

This process can also become very complex with remote or secure cluster
instances. For example, if you have an Argo CD cluster in Asia and your CI
system runs in the US, connectivity between the two might be very slow or
impossible.

In summary, argocd diff—local is great for local experimentation and quick
ad hoc checks, but there is a better way to achieve the same result for a
production deployment process (spoiler: it doesn't involve the Argo CD CLI at all,
nor does it need cluster access).

Pre-rendering manifests in a second
Git repository

Let's take a step back. We have been looking for ways to show an enhanced diff
as part of a pull request and ignore the existing diff provided by the Git provider,
as we have seen that this doesn't work with the final manifest.

However, there is a way to enhance the built-in diff and make it work on the final
manifests.

The solution is to use 2 GitOps repositories, for each application/cluster. One Git
repository has the manifests in their unprocessed form (e.g., as Kustomize
overlays) as before. There is now a second repository that has the final rendered
manifests, and Argo CD is pointed at the latter.

Argo CD best practices 31

Here is how it would look:

PreRender manifests in second Git repository

Argo CD best practices 32

If you have ever used a preprocessor or code generator, this process should be
familiar. Essentially, there is an automated process like a CI system that does
the following:

1. A human creates a pull request on the "Source" Git repo with the suggested
change.

2. A "copy" process takes the contents of the pull request and applies the
respective template tool (i.e., Helm/Kustomize) to create the final rendered
manifest.

3. A second pull request is opened automatically on the "Rendered" Git repo
with the contents of the manifests.

4. A human sees the diff of the second pull request, and this time the diff is
between rendered manifests and not snippets/segments.

5. If the pull request is approved, it is merged into both Git repositories,
meaning the second repository has always rendered manifests.

6. Argo CD monitors the second repository and applies the changes (the
integrated support for Helm and Kustomize within Argo CD itself is not
used at all; Argo CD is only syncing raw manifests).

The rendered manifests approach is a valid process, and I have seen it
successfully used in several companies.

The big advantage is that the diff you get in the Git provider provides you with
the full information about what will change in the application after all manifests
are processed.

41

Argo CD best practices 33

https://github.com/kostis-codefresh/rendered-manifests/pull/1/files

Here is the same example with the Helm chart, but this time, we are using a
second Git repository that stores the rendered manifest:

Helm diff with full context

Argo CD best practices 34

However, I am against this process, as it greatly complicates things and
increases the number of moving parts.

It doubles the number of repositories for any given application (or branches
if you use multiple branches).
It introduces another point of failure, which is the copy process that
converts source YAML to final manifests.
It completely bypasses the effort put into Argo CD to process manifests on
its own.
It might be confusing for people who now have 2 Git repositories to work
with and opens the possibility of mistakes on both ends (either committing
stuff on the "source" repo that never makes it to the "rendered" repo or vice
versa).

In general, this is an overkill solution for a problem that can be solved more
elegantly, as we will see later in the article. Still, if you follow this approach and it
works for you, ensure you have safeguards and monitoring in place, especially
for the copy/commit automated process.

Intermission: Preview Terraform
plans

You might think that previewing the full manifests for a pull request is a new
problem that Kubernetes introduced. It isn't. Several tools before Kubernetes had
to deal with the same issue, and it would make sense to look at what they do.

The most obvious candidate to examine is Terraform. If you are not familiar with
Terraform, it is a declarative tool that lets you define your infrastructure in an
HCL file and then "apply" your changes.42 43

Argo CD best practices 35

https://developer.hashicorp.com/terraform/language/syntax/configuration
https://developer.hashicorp.com/terraform/cli/commands/apply

Terraform users have a very similar problem. A pull request that contains
Terraform changes, especially in big projects, is not immediately clear for a
human to understand, unless you are an expert on running Terraform mentally in
your head.

To solve this issue, Terraform has a "plan" command which reads the changes,
decides what it will do, and prints a nice summary of all the proposed changes
without actually doing anything.

Terraform plan

The plan functionality in Terraform is crucial to Terraform teams as it removes
the guesswork about what Terraform will do when the changes are applied.

44

Argo CD best practices 36

https://developer.hashicorp.com/terraform/cli/commands/plan

With this summary at hand, the next step is obvious. We can attach the output of
the plan command to the pull request. Humans can now look at both the diff of
the HCL files and the plan summary and decide if the change is valid or not.

This workflow is so common that an open-source project -
https://www.runatlantis.io/ - does exactly that.

1. You make your changes to the Terraform files.
2. You create a pull request.
3. Atlantis runs the "plan" command and attaches the result to the PR.
4. You can then approve/comment on the PR as a human.
5. Atlantis then runs the "apply" command to modify your infrastructure.
6. Atlantis locks the workspace until you merge the PR, preventing a second

PR from overriding the changes before you merge the first PR.

This workflow is very effective for end-users but has several security drawbacks
similar to those of the argo CLI diff approach:

You need bidirectional communication between your Git provider and the
server that runs Atlantis.
The server that runs Atlantis will run Terraform on its own and therefore
needs all credentials that Terraform has in your organization.
The Atlantis server also needs access to your remote Terraform state.
Essentially, Atlantis has the keys to your kingdom.

Another downside of Atlantis is that it's pull request based, whereas proprietary
Terraform CD tools on the market feature a dashboard where every
project/workspace can be browsed, similar to how you have a dashboard in Argo
CD where you can see your applications and whether or not Argo CD has synced
them.

In theory, we could create a similar system for argocd diff –local, but
given the security implications, there is a much better approach that GitOps
principles help enable.

45

46

Argo CD best practices 37

https://www.runatlantis.io/
https://www.runatlantis.io/docs/provider-credentials.html

Still, attaching a diff in a pull request for greater context offers several
advantages for the end user that we cannot overstate.

Render Kubernetes manifests on the
fly

One of the most important principles of GitOps is that the cluster state is always
the same as what is described in the git state. We really like how Terraform
Atlantis works, but there is a way to improve the workflow and make it more
secure and robust by taking advantage of the Argo CD guarantee for GitOps.

The Terraform CLI that runs on the Atlantis instance needs credentials to your
infrastructure because it must both read the Terraform state and also create
the actual infrastructure once changes are "applied".

With Argo CD, we can completely bypass this limitation because we already have
the cluster state. The pull request target stores it!

Having the cluster state in Git means we don't need any credentials for the
cluster or Argo CD. We can run a diff between the files of the pull request and the
branch it is targeted at. We will also run a preprocessing step for the template
solution (Helm or Kustomize) to get the full manifest.

47

Argo CD best practices 38

https://developer.hashicorp.com/terraform/language/state

So the full process is as follows:

1. Somebody opens a pull request to the manifest repo.
2. We check out the code of the pull request and run Kustomize, Helm, or

other templating tools to have the final rendered manifests of what is
changed.

3. We check out the code of the branch that the Pull Request targets (e.g.
main) and find the same environment, and again run the same templating
tool to get the final manifest

4. We run a diff between the final manifests from the two previous steps.
5. We show the diff to the human operator, who will decide if they will merge

the pull request or not.

The beauty of this approach is that unlike Atlantis , we never access the Argo
CD cluster. All information is coming from Git (an advantage of using GitOps).
The Git-based approach means that your Argo CD cluster could be in China with
a very slow or even isolated connection, and your CI server doesn't need to know
anything about it. Your Argo CD server's location and security access are now
irrelevant, as we don't interact with it in any way.

48

Argo CD best practices 39

https://www.runatlantis.io/docs/security.html

Render manifests on the fly

Notice in the diagram above that, unlike Atlantis, our CI server has a direct
connection only to the Git repository. The Argo CD instance still cares only about
the Git repository it monitors.

This makes our approach much more secure as the cluster's credentials remain
within it, and we only interact with the Git repository.

One thing to notice here is that, unlike Atlantis or the argocd diff command,
we are not comparing the desired state in Git to the actual state (acquired from
the cloud provider's API or Kubernetes API); we are comparing two versions of
the desired state stored in different branches of a Git repository. While this
approach is a good enough approximation, it is not 100% equivalent to the
argocd diff one.

Argo CD best practices 40

A corner case scenario would be Helm Capabilities - built-in variables populated
by querying the K8s cluster for API version and available resources. Some Helm
templates use this information to render correct resource versions appropriate
for a specific cluster's version and available CRDs. This information has to be
supplied manually to the helm template command to achieve parity with
argocd diff.

Argo CD best practices 41

Attaching the full manifest diff to a
pull request

The icing on the cake is that we will also attach the full manifest diff to the pull
request as Atlantis does. This is how it would look:

Environment diff

Argo CD best practices 42

We now need to explain to users that they should no longer look at the
automatic diff of the pull request because it only tells part of the story. Instead,
they should look at our attached diff, get the complete picture of what has
changed, and make decisions accordingly.

The attached diff is especially important for people who use Helm, as you can
see a diff between plain YAML instead of trying to run manually Golang
templates in your head.

Enforcing changes during
environment promotion

If you follow this diff approach where the full manifests' changes are shown in
the pull request, it will be much easier for you and your team to collaborate on
GitOps changes as everybody will have the full context of each incoming
change.

However, a secondary benefit of this diff approach is knowing what is not
changed.

I wrote an article about promotions between GitOps environments using
folders . A lot of people asked about how you can guarantee that extracting a
common setting from downstream Kustomize overlays and promoting it your
base overlay can be safely executed in a single step.

I was really puzzled by this query until I realized that most people asking this
question looked at the simpler diff of the pull request and thus lacked the full
context of the change.

49

Argo CD best practices 43

https://codefresh.io/blog/how-to-model-your-gitops-environments-and-promote-releases-between-them/
https://codefresh.io/blog/how-to-model-your-gitops-environments-and-promote-releases-between-them/

Let's take an example. You have two environments qa and staging with the
following settings:

UI_THEME=light

CACHE_SIZE=2048kb

SORTING=ascending

N_BUCKETS=42

You want to add a new setting called PAGE_LIMIT=25 and gradually promote it,
first to QA, and then to staging.

You modify/commit the qa environment .

UI_THEME=light

CACHE_SIZE=2048kb

PAGE_LIMIT=25

SORTING=ascending

N_BUCKETS=42

The deployment goes ok, and you make the same change to the Staging
environment . It works fine there as well.

Now you decide that this new setting should be the same across both
environments, and you decide to move it to the parent overlay , which is
common to all non-prod environments.

So the actions you take are:

1. Delete the setting from the QA environment
2. Delete the setting from the Staging environment
3. Add the setting into the parent overlay that both environments depend on
4. Commit/push all the above in a single step

Many people were concerned about this process and asked how to ensure it
would work without affecting the existing environments.

50

51

52

Argo CD best practices 44

https://github.com/kostis-codefresh/manifest-refactoring/blob/main/envs/qa/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/main/envs/staging/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/main/envs/staging/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/refactoring-of-settings/variants/non-prod/application.properties

We can finally answer this question by simply looking at the enhanced diff of the
above commit

No change in the final manifests

That's right. All diffs are completely empty. Even though there are changes in the
individual Kustomize files, the result (the rendered manifests) is exactly the
same.

This means that if you approve this pull request, Argo CD will do absolutely
nothing, and you are sure that all environments will be oblivious to this
refactoring.

Of course, the basic diff of the pull request is not that smart and shows the diff
changes in text in the individual files .

53

54

Argo CD best practices 45

https://github.com/kostis-codefresh/manifest-refactoring/pull/1
https://github.com/kostis-codefresh/manifest-refactoring/pull/1
https://github.com/kostis-codefresh/manifest-refactoring/pull/1/files
https://github.com/kostis-codefresh/manifest-refactoring/pull/1/files

Plain diff shows changes

So in this scenario, we have the extreme case when the built-in diff of the pull
request doesn't have the full context of what is going on because it doesn't
understand the full manifests.

Argo CD best practices 46

Understand the impact of your
manifest changes

Previewing changes before applying them is a pillar of modern software
automation, but in the case of Kubernetes applications, this is not always
straightforward because the manifests are templated.

We have now seen several ways of previewing the changes in Argo CD
applications:

1. Basic diff of the Git platform (not recommended)
2. Native diff of the Argo CD UI
3. Diff local files with the Argo CD CLI
4. Pre-rendering manifests in a second Git repository
5. Rendering manifests on the fly for each Pull request (recommended)

We hope that this process is helpful for you and your team, especially when it is
combined with static analysis, syntax validation, security scans, and other sanity
checks that run against your Kubernetes manifests.

Argo CD best practices 47

Creating preview environments for
pull requests

The last use case we will explore in this whitepaper is temporary/preview
environments.

In our big guide for Kubernetes deployments , we explained the benefits of
using dynamic environments for testing.

Dynamic environment for each pull request

The general idea is that each developer gets a preview environment instead of
having a fixed number of testing/QA environments. The environment gets
created on the fly when you open a pull request. Typically, it gets destroyed when
you merge the pull request, or after a specific amount of time.

55

Argo CD best practices 48

https://codefresh.io/blog/kubernetes-antipatterns-2/

Previously, we explained how to implement this pattern using just Helm
applications and an Ingress on a Kubernetes cluster with a traditional
deployment pipeline.

If your organization has moved to GitOps, you might wonder if you can replicate
this setup with Argo CD. The answer is yes!

In this section, you'll learn how to create preview environments with Argo CD by
using the Pull Request generator for this scenario.

Keeping developers happy

There are several approaches for creating preview environments with Argo CD.
One major decision is whether you want a preview environment created for a pull
request in the application source code, or a pull request on the Kubernetes
manifests. As a reminder, it's always a good idea to separate source code from
manifests in two separate Git repositories.

Both approaches are valid, but we will focus on pull requests created on the
source code. Developers open these pull requests when they've implemented a
feature and want to test or share it with their team.

We don't want to force developers to learn how Argo CD or Kubernetes works.
So, as far as they're concerned, they open a pull request as usual, and after
some time, a new preview environment gets created with the contents of the pull
request.

56

57

58

Argo CD best practices 49

https://codefresh.io/blog/unlimited-preview-environments/
https://codefresh.io/blog/unlimited-preview-environments/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/Generators-Pull-Request/
https://codefresh.io/blog/argo-cd-best-practices/

Magic deployments reduce developer load

Argo CD best practices 50

There are many ways to create preview environments for Kubernetes. For
simplicity, we'll follow the same assumptions as in the Helm article .

1. We'll use a single cluster for all preview environments.
2. Argo CD will run inside the same cluster.
3. We'll deploy each pull request to its own namespace.
4. The name of the namespace will match the name of the pull request.

If two developers create two pull requests named "my-billing-feature" and "fix-
queue-size", two new namespaces with the same names get created for the
respective deployments. Each namespace contains the container from the
respective Continuous Integration build, so both developers can test their
features in isolation.

There are more advanced scenarios, like creating a virtual cluster per pull
request, but they are out of scope for this paper.

Generating Argo CD applications
automatically

The basic concept of an Argo CD installation is the application , which is a link
between a Git repository and a destination cluster. We explained how to create
Argo CD applications using generators in our article about Argo CD application
sets .

Things are a bit different in preview environments, as we don't have a folder in
Git that represents the application. If we did, we could use the Git generator to
create preview environments as more folders are created/destroyed.

56

59

60

11

Argo CD best practices 51

https://codefresh.io/blog/unlimited-preview-environments/
https://www.vcluster.com/
https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-setup/#applications
https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-using-application-sets/
https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-using-application-sets/

Theoretically, we could instruct our Continuous Integration system to commit
new folders on the manifest repo for each preview application. But this process
is too cumbersome, and there's no need to go down that route. The Pull Request
generator solves this problem by creating applications directly from pull
requests instead of folders.

Unlike other Argo CD generators, the PR Generator is special because it can
monitor any Git repository for pull requests. It doesn't have to be the same one
that has manifests. This lets you monitor the Git repository for source code
while still deploying manifests from a different Git repository.

Here's our updated architecture where we've expanded the "magic" section from
the previous picture.

Magic has been replaced by the Argo CD Pull Request generator

57

Argo CD best practices 52

https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/Generators-Pull-Request/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/Generators-Pull-Request/

The whole process goes like this:

1. There's one Git repository with just the source code of the application.
There's another Git repository with Kubernetes manifests (Helm, Kustomize,
or plain manifests).

2. A developer creates a branch on the source Git repository and starts
working on a feature.

3. When the developer finishes, they create a pull request on the branch.
4. Argo CD notices the pull request on the source code Git repository and

creates a new application for it.
5. The Pull Request generator takes the manifests from the infrastructure

repository and templates/modifies them according to the pull request in the
source code repo.

6. A new application gets created and deployed in the Kubernetes cluster.
7. The developer accesses the new application, reviews it, runs unit tests,

shares it, etc.
8. When the pull request gets merged/closed, Argo CD automatically discards

the preview environment.
9. The process works in parallel for all developers working on features.

This is the heart of the process. We must consider several supporting factors to
create a rock-solid experience for developers.

Argo CD best practices 53

Coordinating with the Continuous
Integration system

The main goal of the preview environment is to let developers test their new
features in isolation. Before dealing with Argo CD deployments, we need a
Continuous Integration system that covers two basic requirements:

1. It automatically builds a container every time you open a pull request.
2. It pushes the container using the Git hash of the source code as a tag.

We use Codefresh CI in our example application, but any CI system should be
able to cover these requirements.

You can find the source code of the example application at
https://github.com/kostis-codefresh/preview-env-source-code . All the
manifests are at https://github.com/kostis-codefresh/preview-env-manifests .
Note that we follow the Argo CD best practices for splitting source code from
Kubernetes manifests.

This example uses Kustomize. For an example with Helm, see Piot's guide on
the same subject .

61

62

58

63

Argo CD best practices 54

https://github.com/kostis-codefresh/preview-env-source-code
https://github.com/kostis-codefresh/preview-env-manifests
https://codefresh.io/blog/argo-cd-best-practices/
https://piotrminkowski.com/2023/06/19/preview-environments-on-kubernetes-with-argocd/
https://piotrminkowski.com/2023/06/19/preview-environments-on-kubernetes-with-argocd/

Here's a minimal Codefresh pipeline that builds a container image with the same
tag as the source code:

version: "1.0"

stages:

 - "clone"

 - "build"

steps:

 clone:

 title: "Cloning repository"

 type: "git-clone"

 repo: "kostis-codefresh/preview-env-source-code"

 revision: "${{CF_REVISION}}"

 git: "github-1"

 stage: "clone"

 build:

 title: "Building Docker image"

 type: "build"

 image_name: "kostiscodefresh/my-preview-app"

 working_directory: "${{clone}}"

 tag: "${{CF_SHORT_REVISION}}"

 dockerfile: "Dockerfile"

 stage: "build"

The important part here is the "tag" line, which instructs Codefresh to tag the
Docker image with the same hash as the source code. The short revision
variable represents the Git hash and is automatically injected by Codefresh with
the commit that we checked out.

The second requirement is to run this pipeline only for pull request events. This
happens out-of-the-box with Codefresh Git triggers .64

Argo CD best practices 55

https://codefresh.io/docs/docs/pipelines/triggers/git-triggers/

Trigger setting

We now have a pipeline that satisfies our requirements. If you create pull
requests on the source code repository, Codefresh automatically builds them.

Argo CD best practices 56

When the pipeline has finished, you can see in Docker Hub (or whichever
container registry you're using), the resulting images are tagged with the same
Git hash as the source code branch:

Docker Hub tags

This concludes the setup for the Continuous Integration part. Let's move on to
the deployment process.

65

Argo CD best practices 57

https://hub.docker.com/r/kostiscodefresh/my-preview-app/tags

Performing the initial deployment

With the CI part in place, we can create our pull request Generator. Here's the
initial version .

This Pull Request generator does the following:

1. Monitors the kostis-codefresh/preview-env-source code repository for
pull requests.

2. If it finds a pull request, it creates an Argo CD application named myapp-
<name of branch>.

3. The Argo CD application syncs manifests found in the kustomize-preview-
app directory in the preview-env-manifests repo.

4. It deploys the manifests to the local cluster where Argo CD is installed, to a
namespace with the same name as the branch of the pull request
prepended with "preview".

5. It sets the container tag with the same hash as the source code, so that it
matches the CI pipelines of Codefresh described in the previous section.

You can test this Pull Request generator by applying it to your local Argo CD
instance.

kubectl apply -f pr-generator.yml -n argocd

Then, you can start creating pull requests on your source code repository and
see applications created automatically. Isn't this great?

66

61

67

Argo CD best practices 58

https://github.com/kostis-codefresh/preview-env-manifests/blob/main/argocd/pr-generator.yml
https://github.com/kostis-codefresh/preview-env-manifests/blob/main/argocd/pr-generator.yml
https://github.com/kostis-codefresh/preview-env-source-code
https://github.com/kostis-codefresh/preview-env-manifests/tree/main/kustomize-preview-app
https://github.com/kostis-codefresh/preview-env-manifests/tree/main/kustomize-preview-app

Preview apps in Argo CD

In our example, we instructed Argo CD to check for new pull requests every 3
minutes via the requeueAfterSeconds property. You need to fine-tune this
property according to your organization's needs.

As always, you can click on any application to see its Kubernetes resources.

Kubernetes resources

That's it!

Argo CD best practices 59

Every time a developer creates a new pull request, their container image gets
deployed automatically in the same namespace as the branch name. You can
also inspect the applications manually in the cluster with the CLI.

➜ argocd git:(main) kubectl get ns

NAME STATUS AGE

argocd Active 26d

default Active 26d

kube-node-lease Active 26d

kube-public Active 26d

kube-system Active 26d

preview-fix-queue-size Active 2m14s

preview-my-billing-feature Active 2m14s

We use the "preview" prefix for all namespaces to make things easy. However,
you can choose any naming convention for your organization.

Handling new commits in pull
requests

Often, a developer notices something in a preview environment, fixes it, and
wants to perform a redeployment. With our setup, this happens automatically. If
the developer commits again, the Pull Request generator detects the commit
and redeploys the application.

Note that we set the refresh period to 3 minutes in our example. Our application
is straightforward, so typically when the Pull Request generator redeploys an
environment, the container image is already built and pushed to our registry.

Argo CD best practices 60

There's also the scenario where the image build is not yet complete. Argo CD will
mark the deployment with an ImagePullBackOff error. Kubernetes will
automatically retry the pull later, and the application will eventually succeed.
However, note that this will work only if your application takes less than 5
minutes to build, as this is the default timeout for image pull operations.

New image is not built

If this is an issue for your developers, you can simply instruct the Pull Request
generator to only deploy pull requests with a special label, for example "preview-
ready". Then you have your CI system or developers add that label on the pull
request after the CI build has finished. This way you guarantee the image is
always there when Argo CD creates the temporary environment.

Argo CD best practices 61

Destroying the temporary Argo CD
application

Destroying an environment is straightforward. After you merge or reject/close a
pull request, Argo CD detects it and automatically discards the respective
environment.

Note that in our simple example, the preview namespace stays behind. To delete
the namespace, you need to add a namespace resource in your Helm chart or
Kustomize folder. Alternatively, you can set up a job that periodically removes
unused namespaces.

Passing the name of the branch to a
preview environment

Our setup works great for several common scenarios. One key point is that the
application doesn't know if it's running in a preview environment.

Sometimes, however, you want to pass information about the pull request
environment to the application, usually as a parameter with the name of the
branch or the Git hash. This information can make the application adapt to the
preview environment. An example scenario would be to set up an Ingress with
the URL that matches the pull request. So in our example, we'd have URLs like
this:

example.com/fix-queue-size
example.com/my-billing-app

Argo CD best practices 62

http://example.com/fix-queue-size
http://example.com/my-billing-app

Our example application source code already accepts the Git hash and the
branch name as environment variables .

We can modify our Pull Request generator to pass these parameters in the
created application.

...

patches:

 - target:

 kind: Deployment

 name: simple-deployment

 patch: |-

 - op: replace

 path: /spec/template/spec/containers/0/env/0

 value:

 name: GIT_BRANCH

 value: '{{.branch_slug}}'

 - op: replace

 path: /spec/template/spec/containers/0/env/1

 value:

 name: GIT_HASH

 value: '{{.head_short_sha_7}}'

...

68

Argo CD best practices 63

https://github.com/kostis-codefresh/preview-env-source-code/blob/main/main.go#L21
https://github.com/kostis-codefresh/preview-env-source-code/blob/main/main.go#L21

Now, when you create a preview application, if you visit the application, you see
that it knows which branch and hash it was created from.

Previewing app parameters

Note that we do not recommend this override syntax for static and/or production
environments. It mixes Argo CD resources with information from the Kubernetes
manifests. However, we recognize that some developers like this capability, so
we include it in this guide for completeness.

Argo CD best practices 64

Limitations and future
considerations

The approach we've seen – monitoring the source code repository for pull
requests – is very simple to set up, but there are some limitations:

1. By default, it deploys the new manifests without waiting for the container
image to be ready. Kubernetes will automatically retry to pull it for the first 5
minutes only. So if your CI system needs more than 5 minutes to build (and
test) the application, this approach won't work for you.

2. Developers can only create a preview environment for a single application
(the one with the pull request). If your organization has adopted
microservices, a developer might want to create a common preview
environment with different applications from different Git repositories.
However, this scenario is not possible with the approach in this guide.

3. There are some cases where the preview environment is not just a new
container tag. Still, the developer wants to preview a configuration change,
for example, introducing a new variable or configuration file. Again, this
scenario is not possible with the approach in this guide.

You can solve all these limitations by changing the behavior of the Pull Request
generator to monitor the Kubernetes manifest repository for pull requests.
However, this process is more complex, so we'll cover it in a future article.

Argo CD best practices 65

Help developers test their changes in
isolation with Argo CD

In this section, you've seen how to use Argo CD even for preview environments.
Using the ApplicationSet Pull Request generator, you can create
temporary/ephemeral deployments so developers can test a feature in isolation.
Updating the environment with new code when the developer performs
additional commits in the pull request is also easy to configure.

The benefits of GitOps can also apply to preview environments. For example,
it's now possible to quickly find configuration differences between environments
or even revert to a preview version of the environment using just a Git action.

With the power of the ApplicationSet Generator, you can also automatically
delete all inactive temporary environments. This helps with cloud costs and
long-term maintenance of temporary environments.

The process is fully transparent for developers. They can continue creating pull
requests in the source code repository. After they merge/reject the pull request,
Argo CD discards the temporary environment without human intervention.

We hope you now have a good starting point for your preview environment
strategy.

69

70

Argo CD best practices 66

https://codefresh.io/learn/argo-cd/argocd-applicationset-multi-cluster-deployment-made-easy-with-code-examples/
https://codefresh.io/blog/gitops-benefits-and-considerations/

Conclusion

In this whitepaper, we have covered several day-2 operations for Argo CD. We
have seen how:

to use Argo CD with microservices
to enhance your pull requests with additional diff information
to help developers test their features in isolated environments.

If you need more help during your Argo CD journey, Codefresh has
comprehensive support services , TAM experts , and the world's first GitOps
certification . We would be delighted to help you.

71 72

73

Argo CD best practices 67

https://codefresh.io/enterprise-argo-support/
https://codefresh.io/argo-technical-account-management/
https://learning.codefresh.io/
https://learning.codefresh.io/

References

1. https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml
2. https://argo-cd.readthedocs.io/en/stable/getting_started/
3. https://artifacthub.io/packages/helm/argo/argo-cd
4. https://argo-cd.readthedocs.io/en/stable/operator-

manual/upgrading/overview/
5. https://developer.hashicorp.com/terraform
6. https://www.pulumi.com/
7. https://www.crossplane.io/
8. https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
9. https://registry.terraform.io/providers/hashicorp/helm/latest/docs

10. https://registry.terraform.io/providers/argoproj-labs/argocd/latest/docs
11. https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-

using-application-sets/
12. https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-

setup/#manage-argo-cd-using-argo-cd
13. https://argocd-autopilot.readthedocs.io/en/stable/
14. https://github.com/argoproj-labs/argocd-autopilot
15. https://slack.cncf.io/
16. https://codefresh.io/blog/scaling-argo-cd-securely-in-2024/
17. https://codefresh.io/codefresh-signup/
18. https://github.com/argoproj/argo-cd/issues/7437
19. https://argo-cd.readthedocs.io/en/stable/operator-manual/cluster-

bootstrapping/
20. https://argo-cd.readthedocs.io/en/stable/user-guide/sync-waves/
21. https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
22. https://argo-cd.readthedocs.io/en/stable/operator-

manual/health/#argocd-app
23. https://github.com/argoproj/argo-cd/issues/3781

Argo CD best practices 68

https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml
https://argo-cd.readthedocs.io/en/stable/getting_started/
https://artifacthub.io/packages/helm/argo/argo-cd
https://argo-cd.readthedocs.io/en/stable/operator-manual/upgrading/overview/
https://argo-cd.readthedocs.io/en/stable/operator-manual/upgrading/overview/
https://developer.hashicorp.com/terraform
https://www.pulumi.com/
https://www.crossplane.io/
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
https://registry.terraform.io/providers/hashicorp/helm/latest/docs
https://registry.terraform.io/providers/argoproj-labs/argocd/latest/docs
https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-using-application-sets/
https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-using-application-sets/
https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-setup/#manage-argo-cd-using-argo-cd
https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-setup/#manage-argo-cd-using-argo-cd
https://argocd-autopilot.readthedocs.io/en/stable/
https://github.com/argoproj-labs/argocd-autopilot
https://slack.cncf.io/
https://codefresh.io/blog/scaling-argo-cd-securely-in-2024/
https://codefresh.io/codefresh-signup/
https://github.com/argoproj/argo-cd/issues/7437
https://argo-cd.readthedocs.io/en/stable/operator-manual/cluster-bootstrapping/
https://argo-cd.readthedocs.io/en/stable/operator-manual/cluster-bootstrapping/
https://argo-cd.readthedocs.io/en/stable/user-guide/sync-waves/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/#argocd-app
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/#argocd-app
https://github.com/argoproj/argo-cd/issues/3781

24. https://kubernetes.io/docs/tasks/configure-pod-container/configure-
liveness-readiness-startup-probes/

25. https://github.com/kostis-codefresh/application-dependency-argocd
26. https://github.com/kostis-codefresh/application-dependency-

argocd/blob/main/apps/example-frontend.yml
27. https://github.com/kostis-codefresh/application-dependency-

argocd/blob/main/apps/example-api.yml
28. https://github.com/kostis-codefresh/application-dependency-

argocd/blob/main/apps/example-db.yml
29. https://github.com/kostis-codefresh/application-dependency-

argocd/tree/main/apps
30. https://github.com/kostis-codefresh/application-dependency-

argocd/blob/main/all-apps.yml
31. https://github.com/kostis-codefresh/application-dependency-

argocd/blob/main/patch-argocd-cm..yml
32. https://github.com/kostis-codefresh/application-dependency-

argocd/blob/main/manifests/frontend/deployment.yml
33. https://github.com/kostis-codefresh/application-dependency-

argocd/blob/main/manifests/api/deployment.yml
34. https://argocd-applicationset.readthedocs.io/en/stable/
35. https://github.com/argoproj/argo-cd/issues/3517
36. https://github.com/argoproj/applicationset/issues/221
37. https://github.com/kostis-codefresh/argocd-preview-diff/blob/no-

context-pr/envs/prod-us/replicas.yml
38. https://argo-cd.readthedocs.io/en/stable/user-guide/auto_sync/
39. https://www.cncf.io/blog/2020/12/17/solving-configuration-drift-using-

gitops-with-argo-cd/
40. https://argo-cd.readthedocs.io/en/stable/user-

guide/commands/argocd_app_diff/
41. https://github.com/kostis-codefresh/rendered-manifests/pull/1/files
42. https://developer.hashicorp.com/terraform/language/syntax/configuration
43. https://developer.hashicorp.com/terraform/cli/commands/apply

Argo CD best practices 69

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://github.com/kostis-codefresh/application-dependency-argocd
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-frontend.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-frontend.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-api.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-api.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-db.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/apps/example-db.yml
https://github.com/kostis-codefresh/application-dependency-argocd/tree/main/apps
https://github.com/kostis-codefresh/application-dependency-argocd/tree/main/apps
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/all-apps.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/all-apps.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/patch-argocd-cm..yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/patch-argocd-cm..yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/manifests/frontend/deployment.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/manifests/frontend/deployment.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/manifests/api/deployment.yml
https://github.com/kostis-codefresh/application-dependency-argocd/blob/main/manifests/api/deployment.yml
https://argocd-applicationset.readthedocs.io/en/stable/
https://github.com/argoproj/argo-cd/issues/3517
https://github.com/argoproj/applicationset/issues/221
https://github.com/kostis-codefresh/argocd-preview-diff/blob/no-context-pr/envs/prod-us/replicas.yml
https://github.com/kostis-codefresh/argocd-preview-diff/blob/no-context-pr/envs/prod-us/replicas.yml
https://argo-cd.readthedocs.io/en/stable/user-guide/auto_sync/
https://www.cncf.io/blog/2020/12/17/solving-configuration-drift-using-gitops-with-argo-cd/
https://www.cncf.io/blog/2020/12/17/solving-configuration-drift-using-gitops-with-argo-cd/
https://argo-cd.readthedocs.io/en/stable/user-guide/commands/argocd_app_diff/
https://argo-cd.readthedocs.io/en/stable/user-guide/commands/argocd_app_diff/
https://github.com/kostis-codefresh/rendered-manifests/pull/1/files
https://developer.hashicorp.com/terraform/language/syntax/configuration
https://developer.hashicorp.com/terraform/cli/commands/apply

44. https://developer.hashicorp.com/terraform/cli/commands/plan
45. https://www.runatlantis.io/
46. https://www.runatlantis.io/docs/provider-credentials.html
47. https://developer.hashicorp.com/terraform/language/state
48. https://www.runatlantis.io/docs/security.html
49. https://codefresh.io/blog/how-to-model-your-gitops-environments-and-

promote-releases-between-them/
50. https://github.com/kostis-codefresh/manifest-

refactoring/blob/main/envs/qa/application.properties
51. https://github.com/kostis-codefresh/manifest-

refactoring/blob/main/envs/staging/application.properties
52. https://github.com/kostis-codefresh/manifest-

refactoring/blob/refactoring-of-settings/variants/non-
prod/application.properties

53. https://github.com/kostis-codefresh/manifest-refactoring/pull/1
54. https://github.com/kostis-codefresh/manifest-refactoring/pull/1/files
55. https://codefresh.io/blog/kubernetes-antipatterns-2/
56. https://codefresh.io/blog/unlimited-preview-environments/
57. https://argo-cd.readthedocs.io/en/stable/operator-

manual/applicationset/Generators-Pull-Request/
58. https://codefresh.io/blog/argo-cd-best-practices/
59. https://www.vcluster.com/
60. https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-

setup/#applications
61. https://github.com/kostis-codefresh/preview-env-source-code
62. https://github.com/kostis-codefresh/preview-env-manifests
63. https://piotrminkowski.com/2023/06/19/preview-environments-on-

kubernetes-with-argocd/
64. https://codefresh.io/docs/docs/pipelines/triggers/git-triggers/
65. https://hub.docker.com/r/kostiscodefresh/my-preview-app/tags
66. https://github.com/kostis-codefresh/preview-env-

manifests/blob/main/argocd/pr-generator.yml

Argo CD best practices 70

https://developer.hashicorp.com/terraform/cli/commands/plan
https://www.runatlantis.io/
https://www.runatlantis.io/docs/provider-credentials.html
https://developer.hashicorp.com/terraform/language/state
https://www.runatlantis.io/docs/security.html
https://codefresh.io/blog/how-to-model-your-gitops-environments-and-promote-releases-between-them/
https://codefresh.io/blog/how-to-model-your-gitops-environments-and-promote-releases-between-them/
https://github.com/kostis-codefresh/manifest-refactoring/blob/main/envs/qa/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/main/envs/qa/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/main/envs/staging/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/main/envs/staging/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/refactoring-of-settings/variants/non-prod/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/refactoring-of-settings/variants/non-prod/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/blob/refactoring-of-settings/variants/non-prod/application.properties
https://github.com/kostis-codefresh/manifest-refactoring/pull/1
https://github.com/kostis-codefresh/manifest-refactoring/pull/1/files
https://codefresh.io/blog/kubernetes-antipatterns-2/
https://codefresh.io/blog/unlimited-preview-environments/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/Generators-Pull-Request/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/Generators-Pull-Request/
https://codefresh.io/blog/argo-cd-best-practices/
https://www.vcluster.com/
https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-setup/#applications
https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-setup/#applications
https://github.com/kostis-codefresh/preview-env-source-code
https://github.com/kostis-codefresh/preview-env-manifests
https://piotrminkowski.com/2023/06/19/preview-environments-on-kubernetes-with-argocd/
https://piotrminkowski.com/2023/06/19/preview-environments-on-kubernetes-with-argocd/
https://codefresh.io/docs/docs/pipelines/triggers/git-triggers/
https://hub.docker.com/r/kostiscodefresh/my-preview-app/tags
https://github.com/kostis-codefresh/preview-env-manifests/blob/main/argocd/pr-generator.yml
https://github.com/kostis-codefresh/preview-env-manifests/blob/main/argocd/pr-generator.yml

67. https://github.com/kostis-codefresh/preview-env-
manifests/tree/main/kustomize-preview-app

68. https://github.com/kostis-codefresh/preview-env-source-
code/blob/main/main.go#L21

69. https://codefresh.io/learn/argo-cd/argocd-applicationset-multi-cluster-
deployment-made-easy-with-code-examples/

70. https://codefresh.io/blog/gitops-benefits-and-considerations/
71. https://codefresh.io/enterprise-argo-support/
72. https://codefresh.io/argo-technical-account-management/
73. https://learning.codefresh.io/

Further reading

If you enjoyed this, you might also enjoy some of these articles on Argo CD:

1. https://codefresh.io/blog/argo-cd-anti-patterns-for-gitops/
2. https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-

using-application-sets/
3. https://codefresh.io/blog/argocd-clusters-labels-with-apps/

Argo CD best practices 71

https://github.com/kostis-codefresh/preview-env-manifests/tree/main/kustomize-preview-app
https://github.com/kostis-codefresh/preview-env-manifests/tree/main/kustomize-preview-app
https://github.com/kostis-codefresh/preview-env-source-code/blob/main/main.go#L21
https://github.com/kostis-codefresh/preview-env-source-code/blob/main/main.go#L21
https://codefresh.io/learn/argo-cd/argocd-applicationset-multi-cluster-deployment-made-easy-with-code-examples/
https://codefresh.io/learn/argo-cd/argocd-applicationset-multi-cluster-deployment-made-easy-with-code-examples/
https://codefresh.io/blog/gitops-benefits-and-considerations/
https://codefresh.io/enterprise-argo-support/
https://codefresh.io/argo-technical-account-management/
https://learning.codefresh.io/
https://codefresh.io/blog/argo-cd-anti-patterns-for-gitops/
https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-using-application-sets/
https://codefresh.io/blog/how-to-structure-your-argo-cd-repositories-using-application-sets/
https://codefresh.io/blog/argocd-clusters-labels-with-apps/

Octopus Deploy
Level 4, 199 Grey St
South Brisbane, QLD 4101, Australia

� Email: sales@octopus.com

� Phone: +1 512-823-0256

� octopus.com

